6. Electricity[1]
Electricity, like heat, only in a different way, has also a certain omnipresent character. Hardly any change can occur in the world without it being possible to demonstrate the presence of electrical phenomena. If water evaporates, if a flame burns, if two different metals, or two metals of different temperature, touch, or if iron touches a solution of copper sulphate, and so on, electrical processes take place simultaneously with the more apparent physical and chemical phenomena. The more exactly we investigate natural processes of the most diverse nature, the more do we find evidence of electricity. In spite of its omnipresence, in spite of the fact that for half a century electricity has become more and more pressed into the industrial service of mankind, it remains precisely that form of motion the nature of which is still enveloped in the greatest obscurity.
The discovery of the galvanic current is approximately 25 years younger than that of oxygen and is at least as significant. for the theory of electricity as the latter discovery was for chemistry. Yet what a difference obtains even to-day between the two fields ! In chemistry, thanks especially to Dalton's discovery of atomic weights, there is order, relative certainty about what has been achieved, and systematic, almost planned, attack on the territory still unconquered, comparable to the regular siege of a fortress. In the theory of electricity there is a barren lumber of ancient, doubtful experiments, neither definitely confirmed nor definitely refuted; , an uncertain fumbling in the dark, uncoordinated research and experiment on the part of numerous isolated individuals, who attack the unknown territory with their scattered forces like the attack of a swarm of nomadic horsemen. It must be admitted, indeed, that in the sphere of electricity a discovery like that of Dalton, giving the whole science a central point and a firm basis for research, is still to seek.[2] It is essentially this unsettled state of the theory of electricity, which for the time being makes it impossible to establish a comprehensive theory, that is responsible for the fact that a one-sided empiricism prevails in this sphere, an empiricism which as far as possible itself forbids thought, and which precisely for that reason not only thinks incorrectly but also is incapable of faithfully pursuing the facts or even of reporting them faithfully, and which, therefore, becomes transformed into the opposite of true empiricism.
If in general those natural scientists, who cannot say anything bad enough of the crazy a priori speculations of the German philosophy of nature, are to be recommended to read the theoretico-physical works of the empirical school, not only of the contemporary but even of a much later period, this holds good quite especially for the theory of electricity. Let us take a work of the year 1840: An Outline of the Sciences of Heat and Electricity, by Thomas Thomson. Old Thomson was indeed an authority in his day ; moreover he had already at his disposal a very considerable part of the work of the greatest electrician so far – Faraday. Yet his book contains at least just as crazy things as the corresponding section of the much older Hegelian philosophy of nature. The description of the electric spark, for instance, might have been translated directly from the corresponding passage in Hegel. Both enumerate all the wonders that people sought to discover in the electric spark, prior to knowledge of its real nature and manifold diversity, and which have now been shown to be mainly special cases or errors.
Still better, Thomson recounts quite seriously on p. 446 Dessaigne's cock-and-bull stories, such as that, with a rising barometer and falling thermometer, glass, resin, silk, etc., become negatively electrified on immersion in mercury, but positively if instead the barometer is falling and the temperature rising ; that in summer gold and several other metals become positive on warming and negative on cooling, but in winter the reverse; that with a high barometer and northerly wind they are strongly electric, positive if the temperature is rising and I negative if it is falling, etc.
So much for the treatment of the facts. As regards a priori speculation, Thomson favours us with the following treatment of the electric spark, derived from no lesser person than Faraday himself:
"The spark is a discharge ... or weakening of the polarised inductive state of many dielectric particles by means of a peculiar action of a few of these particles occupying a very small and limited space. Faraday assumes that the few particles situated where the discharge occurs are not merely pushed apart, but assume a peculiar, highly exalted, condition for the time, i.e. that they have thrown on them all the surrounding forces in succession and are thus brought into a proportionate intensity of condition, perhaps equal to that of chemically combining atoms; that they then discharge the powers, in the same manner as the atoms do theirs, in some way at present unknown to us and so the end of the whole. The ultimate effect is exactly as if a metallic wire had been put into the place of the discharging particles, and it does not seem impossible that the principles of action in both cases may, hereafter, prove to be the same." [3]
I have, adds Thomson, given this explanation of Faraday's in his own words, because I do not understand it clearly. This will certainly have been the experience of other persons also, quite as much as when they read in Hegel that in the electric spark " the special materiality of the charged body does not as yet enter into the process but is determined within it only in an elementary and spiritual way," and that electricity is " the anger, the effervescence, proper to the body," its "angry self " that " is exhibited by every body when excited." (Philosophy of Nature, paragraph 324, addendum.) [4]
Yet the basic thought of both Hegel and Faraday is the same. Both oppose the idea that electricity is not a state of matter but a special, distinct variety of matter. And since in the spark electricity is apparently exhibited as independent, free from any foreign material substratum, separated out and yet perceptible to the senses, they arrive at the necessity, in the state of science at the time, of having to conceive of the spark as a transient phenomenal form of a " force " momentarily freed from all matter. For us, of course, the riddle is solved, since we know that on the spark discharge between metal electrodes real "metallic particles" leap across, and hence in actual fact " the special materiality of the charged body enters into the process."
As is well known, electricity and magnetism, like heat and light, were at first regarded as special imponderable substances. As far as electricity is concerned, it is well known that the view soon developed that there are two opposing substances, two " fluids," one positive and one negative, which in the normal state neutralise each other, until they are forced apart by a so-called " electric force of separation." It is then possible to charge two bodies, one with positive, the other with negative electricity; on uniting them by a third conducting body equalisation occurs, either suddenly or by means of a lasting current, according to circumstances. The sudden equalisation appeared very simple and comprehensible, but the current offered difficulties. The simplest hypothesis, that the current in every case is a movement of either purely positive or purely negative electricity, was opposed by Fechner, and in more detail by Weber, with the view that in every circuit two equal currents of positive and negative electricity flow in opposite directions in channels lying side by side between the ponderable molecules of the bodies.[5] Weber's detailed mathematical working out of this theory finally arrives at the result that a function, of no interest to us here, is multiplied by a magnitude l/r, the latter signifying "the ratio . . . of the unit of electricity to the milligram." (Wiedemann, Lehre vom Galvanismus, etc. [Theory of Galvanism, etc.], 2nd edition, III, p. 569). The ratio to a measure of weight can naturally only be a weight ratio. Hence one-side empiricism had already to such an extent forgotten the practice of thought in calculating that here it even makes the imponderable electricity ponderable and introduces its weight into the mathematical calculation.
The formula derived by Weber sufficed only within certain limits, and Helmholtz, in particular, only a few years ago calculated results that come into conflict with the principle of the conservation of energy. In opposition to Weber's hypothesis of the double current flowing in opposite directions, C. Naumann in 1871 put forward the other hypothesis that in the current only one of the two electricities, for instance the positive, moves, while the other negative one remains firmly bound up with the mass of the body. On this Wiedemann includes the remark: " This hypothesis could be linked up with that of Weber if to Weber's supposed double current of electric masses ±½e flowing in opposite directions, there were added a further current of neutral electricity, externally inactive, which carried with it amounts of electricity ±½e in the direction of the positive current." (III, p. 577.)
This statement is once again characteristic of one-sided empiricism. In order to bring about the flow of electricity at all, it is decomposed into positive and negative. All attempts, however, to explain the current with these two substances, meet with difficulties; both the assumption that only one of them is present in the current and that the two of them flow in opposite directions simultaneously, and finally, the third assumption also that one flows and the other is at rest. If we adopt this last assumption how are we to explain the inexplicable idea that negative electricity, which is mobile enough in the electrostatic machine and the Leyden jar, in the current is firmly united with the mass of the body? Quite simply. Besides the positive current +e, flowing through the wire to the right, and the negative current, -e, flowing to the left, we make yet another current, this time of neutral electricity, ±½e, flow to the right. First we assume that the two electricities, to be able to flow at all, must be separated from one another ; and then, in order to explain the phenomena that occur on the flow of the separated electricities, we assume that they can also flow unseparated. First we make a supposition to explain a particular phenomenon, and at the first difficulty encountered we make a second supposition which directly negates the first one. What must be the sort of philosophy that these gentlemen have the right to complain of?
However, alongside this view of the material nature of electricity, there soon appeared a second view, according to which it is to be regarded as a mere state of the body, a " force " or, as we would say to-day, a special form of motion. We saw above that Hegel, and later Faraday, adhered to this view. After the discovery of the mechanical equivalent of heat had finally disposed of the idea of a special " heat stuff," and heat was shown to be a molecular motion, the next step was to treat electricity also according to the new method and to attempt to determine its mechanical equivalent. This attempt was fully successful. Particularly owing to the experiments of Joule, Favre, and Raoult, not only was the mechanical and thermal equivalent of the so-called " electromotive force " of the galvanic current established, but also its complete equivalence with the energy liberated by chemical processes in the exciting cell or used up in the decomposition cell. This made the assumption that electricity is a special material fluid more and more untenable.
The analogy, however, between heat and electricity was not perfect. The galvanic currents still differed in very essential respects from the conduction of heat. It was still not possible to say what it was that moved in the electrically affected bodies. The assumption of a mere molecular vibration as in the case of heat seemed insufficient. In view of the enormous velocity of motion of electricity, even exceeding that of light,[6] it remained difficult to overcome the view that here some material substance is in motion between the molecules of the body.
Here the most recent theories put forward by Clerk Maxwell (1864), Hankel (1865), Reynard (1870), and Edlund (1872) are in complete agreement with the assumption already advanced in 1846, first of all as a suggestion by Faraday, that electricity is a movement of the elastic medium permeating the whole of space and hence all bodies as well, the discrete particles of which medium repel one another according to the law of the inverse square of the distance. In other words, it is a motion of ether particles, and the molecules of the body take part in this motion. As to the manner of this motion, the various theories are divergent; those of Maxwell, Hankel, and Reynard, taking as their basis modern investigations of vortex motion, explain it in various ways from vortices, so that the vortex of old Descartes also once more comes into favour in an increasing number of new fields. We refrain from going more closely into the details of these theories. They differ strongly from one another and they will certainly still experience many transformations. But a decisive advance appears to lie in their common basic conception: that electricity is a motion of the particles of the luminiferous ether that penetrates all ponderable matter, this motion reacting on the molecules of the body. This conception reconciles the two earlier ones. According to it, it is true that in electrical phenomena it is something substantial that moves, something different from ponderable matter. But this substance is not electricity itself, which in fact proves rather to be a form of motion, although not a form of the immediate direct motion of ponderable matter. While, on the one hand, the ether theory shows a way of getting over the primitive clumsy idea of two opposed electrical fluids, on the other hand it gives a prospect of explaining what the real, substantial substratum of electrical motion is, what sort of a thing it is whose motion produces electrical phenomena .[7]
The ether theory has already had one decisive success. As is well known, there is at least one point where electricity directly alters the motion of light: it rotates the latter's plane of polarisation. On the basis of his theory mentioned above, Clerk Maxwell calculates that the electric specific inductive capacity of a body is equal to the square of its index of refraction. Boltzmann has investigated dielectric coefficients of various nonconductors and he found that in sulphur, rosin, and paraffin, the square roots of these coefficients were respectively equal to their indices of refraction. The highest deviation – in sulphur – amounted to only 4 per cent. Consequently, the Maxwellian ether theory in this particular has hereby been experimentally confirmed.[8]
It will, however, require a lengthy period and cost much labour before new series of experiments will have extracted a firm kernel from these mutually contradictory hypotheses. Until then, or until the ether theory, too, is perhaps supplanted by an entirely new one, the theory of electricity finds itself in the uncomfortable position of having to employ a mode of expression which it itself admits to be false. Its whole terminology is still based on the idea of two electric fluids. It still speaks quite unashamedly of " electric masses flowing in the bodies," of " a division of electricities in every molecule," etc. This is a misfortune which for the most part, as already said, follows inevitably from the present transitional state of science, but which also, with the one-sided empiricism particularly prevalent in this branch of investigation, contributes not a little to preserving the existing confusion of thought.
The opposition between so-called static or frictional electricity and dynamic electricity or galvanism can now be regarded as bridged over, since we have learned to produce constant currents by means of the electric machine and, conversely, by means of the galvanic current to produce so-called static electricity, to charge Leyden jars, etc. We shall not here touch on the subform of static electricity, nor likewise on magnetism, which is now recognised to be also a sub-form of electricity. The theoretical explanation of the phenomena belonging here will under all circumstances have to be sought in the theory of the galvanic current, and consequently we shall keep mainly to this.
A constant current can be produced in many different ways. Mechanical mass motion produces directly, by friction, in the first place only static electricity, and a constant current only with great dissipation of energy. For the major part, at least, to become transformed into electric motion, the intervention of magnetism is required, as in the well- known magneto-electric machines[9] of Gramme, Siemens, and others. Heat can be converted directly into current electricity, as especially occurs at the junction of two different metals. The energy set free by chemical action, which under ordinary circumstances appears in the form of heat, is converted under appropriate conditions into electric motion. Conversely, the latter form of motion, as soon as the requisite conditions are present, passes into any other form of motion: into mass motion, to a very small extent directly into electro-dynamic attractions and repulsions; to a large extent, however, by the intervention of magnetism in the electro-magnetic machine; into heat – throughout a closed circuit, unless other changes are brought about; into chemical energy – in decomposition cells and voltameters introduced into the circuit, where the current dissociates compounds that are attacked in vain by other means.
All these transformations are governed by the basic law of the quantitative equivalence of motion through all its changes of form. Or, as Wiedemann expresses it: "By the law of conservation of force the mechanical work exerted in any way for the production of the current must be equivalent to the work exerted in producing all the effects of the current." The conversion of mass motion or heat into electricity[10] offers us no difficulties here; it has been shown that the so- called "electromotive force"[11] in the first case is equal to the work expended on that motion, and in the second case it is " at every junction of the thermopile directly proportional to its absolute temperature " (Wiedemann, III, p. 482), i.e. to the quantity of heat present at every junction measured in absolute units. The same law has in fact been proved valid also for electricity produced from chemical energy. But here the matter seems to be not so simple, at least for the theory now current. Let us, therefore, go into this somewhat more deeply.
One of the most beautiful series of experiments on the transformations of form of motion as a result of the action of a galvanic cell is that of Favre (1857-58). He put a Smee cell of five elements in a calorimeter; in a second calorimeter he put a small electro-magnetic motor, with the main axle and driving wheel projecting so as to be available for any kind of coupling. Each production in the cell of one gram of hydrogen, or solution of 32·6 grams of zinc (the old chemical equivalent of zinc, equal to half the now accepted atomic weight 65·2, and expressed in grams), gave the following results:
A. The cell enclosed in the calorimeter, excluding the motor: heat production 18,682 or 18,674 units of heat.
B. Cell and motor linked in the circuit, but the motor prevented from moving: heat in the cell 16,448, in the motor 2,219, together 18,667 units of heat.
C. As B, but the motor in motion without however lifting a weight: heat in the cell 13,888, in the motor 4,769, together 18,657 units of heat.
D. As C, but the motor raises a weight and so performs mechanical work==131,24 kilogram-metres: heat in the cell 15,427, in the motor 2,947, total 18,374 units of heat; loss in contrast to the above 18,682 equals 308 units of heat. But the mechanical work performed amounting to 131,24 kilogram-metres, multiplied by 1,000 (in order to bring the kilograms into line with the grams of the chemical results) and divided by the mechanical equivalent of heat== 423,5 kilogram-metres, gives 309 units of heat, hence exactly the loss mentioned above as the heat equivalent of the mechanical work performed.
The equivalence of motion in all its transformations is, therefore, strikingly proved for electric motion also, within the limits of unavoidable error. And it is likewise proved that the " electromotive force " of the galvanic battery is nothing but chemical energy converted into electricity, and the battery itself nothing but an apparatus that converts chemical energy on its liberation into electricity, just as a steam engine trans forms the heat supplied to it into mechanical motion, without in either case the converting apparatus supplying further energy on its own account.
A difficulty arises here, however, in relation to the traditional mode of conception. The latter ascribes an "electric force of separation." to the battery in virtue of the conditions of contact present in it between the fluids and metals, which force is proportional to the electromotive force and therefore for a given battery represents a definite quantity of energy. What then is the relation of this electric force of separation, which according to the traditional mode of conception of the battery as such is inherently a source of energy even without chemical action, to the energy set free by chemical action? And if it is a source of energy independent of the latter, whence comes the energy furnished by it?
This question in a more or less unclear form constitutes the point of dispute between the contact theory founded by Volta and the chemical theory of the galvanic current that arose immediately afterwards.
The contact theory explained the current from the electric stresses arising in the battery on contact of the metals with one or more of the liquids, or even merely on contact of the liquids themselves, and from their neutralisation or that of the opposing electricities thus generated in the circuit. The pure contact theory regarded any chemical changes that might thereby occur as quite secondary. On the other hand, as early as 1805, Ritter maintained that a current could only be formed if the excitants reacted chemically even before closing the circuit. In general this older chemical theory is summarised by Wiedemann (I, p. 284) to the effect that according to it so-called contact electricity "makes its appearance only if at the same time there comes into play a real chemical action of the bodies in contact, or at any rate a disturbance of the chemical equilibrium, even if not directly bound up with chemical processes, a `tendency towards chemical action' between the bodies in contact."
It is seen that both sides put the question of the source of energy of the current only indirectly, as indeed could hardly be otherwise at the time. Volta and his successors found it quite in order that the mere contact of heterogeneous bodies should produce a constant current, and consequently be able to perform definite work without equivalent return. Ritter and his supporters are just as little clear how the chemical action makes the battery capable of producing the current and its performance of work. But if this point has long ago been cleared up for chemical theory by Joule, Favre, Raoult, and others, the opposite is the case for the contact theory. In so far as it has persisted, it remains essentially at the point where it started. Notions belonging to a period long outlived, a period when one had to be satisfied to ascribe a particular effect to the first available apparent cause that showed itself on the surface, regardless of whether motion was thereby made to arise out of nothing- notions that directly contradict the principle of the conservation of energy-thus continue to exist in the theory of electricity of to-day. And if the objectionable aspects of these ideas are shorn off, weakened, watered down, castrated, glossed over, this does not improve matters at all: the confusion is bound to become only so much the worse.
As we have seen, even the older chemical theory of the current declares the contact relations of the battery to be absolutely indispensable for the formation of the current: it maintains only that these contacts can never achieve a constant current without simultaneous chemical action. And even to-day it is still taken as a matter of course that the contact arrangements of the battery provide precisely the apparatus by means of which liberated chemical energy is transformed into electricity, and that it depends essentially on these contact arrangements whether and how much chemical energy actually passes into electric motion.
Wiedemann, as a one-sided empiricist, seeks to save what can be saved of the old contact theory. Let us follow what he has to say. He declares (I, p. 799):
" In contrast to what was formerly believed, the effect of contact of chemically indifferent bodies, e.g. of metals, is neither indispensable for the theory of the pile, nor proved by the facts that Ohm derived his law from it, a law that can be derived without this assumption, and that Fechner, who confirmed this law experimentally, likewise defended the contact theory. Nevertheless, the excitation of electricity by metallic contact, according to the experiments now available at least, is not to be denied, even though the quantitative results obtainable in this respect may always be tainted with an inevitable uncertainty owing to the impossibility of keeping absolutely clean the surfaces of the bodies in contact."
It is seen that the contact theory has become very modest. It concedes that it is not at all indispensable for explaining the current, and neither proved theoretically by Ohm nor experimentally by Fechner. It even concedes then that the so-called fundamental experiments, on which alone it can still rest, can never furnish other than uncertain results in a quantitative respect, and finally it asks us merely to recognise that in general it is by contact – although only of metals! – that electric motion occurs.
If the contact theory remained content with this, there would not be a word to say against it. It will certainly be granted that on the contact of two metals electrical phenomena occur, in virtue of which a preparation of a frog's leg can be made to twitch, an electroscope charged, and other movements brought about. The only question that arises in the first place is: whence comes the energy required for this?
To answer this question, we shall, according to Wiedemann (I, p.14)
"adduce more or less the following considerations: if the heterogeneous metal plates A and B are brought within a close distance of each other, they attract each other in consequence of the forces of adhesion. On mutual contact they lose the vis viva[12] of motion imparted to them by this attraction. (If we assume that the molecules of the metals are in a state of permanent vibration, it could also happen that, if on contact of the heterogeneous metals the molecules not vibrating simultaneously come into contact, an alteration of their vibration is thereby brought about with loss of vis viva.) The lost vis viva is to a large extent converted into heat. A small portion of it, however, is expended in bringing about a different distribution of the electricities previously unseparated. As we have already mentioned above, the bodies brought together become charged with equal quantities of positive and negative electricity, possibly as the result of an unequal attraction for the two electricities."
The modesty of the contact theory becomes greater and greater. At first it is admitted that the powerful electric force of separation, which has later such a gigantic work to perform, in itself possesses no energy of its own, and that it cannot function if energy is not supplied to it from outside. And then it has allotted to it a more than diminutive source of energy, the vis viva of adhesion, which only comes into play at scarcely measurable distances and which allows the bodies to travel a scarcely measurable length. But it does not matter: it indisputably exists and equally undeniably vanishes on contact. But even this minute source still furnishes too much energy for our purpose: a large part is converted into heat and only a small portion serves to evoke the electric force of separation. Now, although it is well known that cases enough occur in nature where extremely minute impulses bring about extremely powerful effects, Wiedemann himself seems to feel that his hardly trickling source of energy can with difficulty suffice here, and he seeks a possible second source in the assumption of an interference of the molecular vibrations of the two metals at the surfaces of contact. Apart from other difficulties encountered here, Grove and Gassiot have shown that for exciting electricity actual contact is not at all indispensable, as Wiedemann himself tells us on the previous page. In short, the more we examine it the more does the source of energy for the electric force of separation dwindle to nothing.
Yet up to now we hardly know of any other source for the excitation of electricity on metallic contact. According to Naumann (Allg. u. phys. Chemie [General and Physical Chemistry], Heidelberg, 1877, p. 675), "the contact-electromotive forces convert heat into electricity"; he finds "the assumption natural that the ability of these forces to produce electric motion depends on the quantity of heat present, or, in other words, that it is a function of the temperature," as has also been proved experimentally by Le Roux. Here too we find ourselves groping in the dark. The law of the voltaic series of metals forbids us to have recourse to the chemical processes that to a small extent are continually taking place at the contact surfaces, which are always covered by a thin layer of air and impure water, a layer as good as inseparable as far as we are concerned. An electrolyte should produce a constant current in the circuit, but the electricity of mere metallic contact, on the contrary, disappears on closing the circuit. And here we come to the real point: whether, and in what manner, the production of a constant current on the contact of chemically indifferent bodies is made possible by this "electric force of separation," which Wiedemann himself first of all restricted to metals, declaring it incapable of functioning without energy being supplied from outside, and then referred exclusively to a truly microscopical source of energy.
The voltaic series arranges the metals in such a sequence that each one behaves as electro-negative in relation to the preceding one and as electro-positive in relation to the one that follows it. Hence if we arrange a series of pieces of metal in this order, e.g. zinc, tin, iron, copper, platinum, we shall be able to obtain differences of electric potential at the two ends. If, however, we arrange the series of metals to form a circuit so that the zinc and platinum are in contact, the electric stress is at once neutralised and disappears. "Therefore the production of a constant current of electricity is not possible in a closed circuit of bodies belonging to the voltaic series." Wiedemann further supports this statement by the following theoretical consideration:
"In fact, if a constant electric current were to make its appearance in the circuit, it would produce heat in the metallic conductors themselves, and this heating could at the most be counterbalanced by cooling at the metallic junctions. In any case it would give rise to an uneven distribution of heat; moreover an electro-magnetic motor could be driven continuously by the current without any sort of supply from outside, and thus work would be performed, which is impossible, since on firmly joining the metals, for instance by soldering, no further changes to compensate for this work could take place even at the contact surfaces."
And not content with the theoretical and experimental proof that the contact electricity of metals by itself cannot produce any current, we shall see too that Wiedemann finds himself compelled to put forward a special hypothesis to abolish its activity even where it might perhaps make itself evident in the current.
Let us, therefore, try another way of passing from contact electricity to the current. Let us imagine, with Wiedemann, "two metals, such as a zinc rod and a copper rod, soldered together at one end, but with their free ends connected by a third body that does not act electromotively in relation to the two metals, but only conducts the opposing electricities collected on its surfaces, so that they are neutralised in it. Then the electric force of separation would always restore the previous difference of potential, thus a constant electric current would make its appearance in the circuit, a current that would be able to perform work without any compensation, which again is impossible. – Accordingly, there cannot be a body which only conducts electricity without electromotive activity in relation to the other bodies." We are no better off than before: the impossibility of creating motion again bars the way. By the contact of chemically indifferent bodies, hence by contact electricity as such, we shall never produce a current.
Let us therefore go back again and try a third way pointed out by Wiedemann:
"Finally, if we immerse a zinc plate and a copper plate in a liquid that contains a so- called binary compound,[13] which therefore can be decomposed into two chemically distinct constituents that completely saturate one another, e.g. dilute hydrochloric acid (H+Cl), etc., then according to paragraph 27 the zinc becomes negatively charged and the copper positively. On joining the metals, these electricities neutralise one another through the place of contact, through which, therefore, a current of positive electricity flows from the copper to the zinc. Moreover, since the electric force of separation making its appearance on the contact of these two metals carries away the positive electricity in the same direction, the effects of the electric forces of separation are not abolished as in a closed metallic circuit. Hence there arises a constant current of positive electricity, flowing in the closed circuit through the copper-zinc junction in the direction of the latter, and through the liquid from the zinc to the copper. We shall return in a moment (paragraph 34, et seq.) to the question how far the individual electric forces of separation present in the enclosed circuit really participate in the formation of the current. – A combination of conductors providing such a 'galvanic current' we term a galvanic element, or also a galvanic battery." (I, p. 45.)
Thus the miracle has been accomplished. By the mere electric contact force of separation, which, according to Wiedemann himself, cannot be effective without energy being supplied from outside, a constant current. has been produced. And if we were offered nothing more for its explanation than the above passage from Wiedemann, it would indeed be an absolute miracle. What have we learned here about the process?
1. If zinc and copper are immersed in a liquid containing a so-called binary compound, then, according to paragraph 27, the zinc becomes negatively charged and the copper positively charged. But in the whole of paragraph 27 there is no word of any binary compound. It describes only a simple voltaic element of a zinc plate and copper plate, with a piece of cloth moistened by an acid liquid interposed between them, and then investigates, without mentioning any chemical processes, the resulting static- electric charges of the two metals.
Hence, the so-called binary compound has been smuggled in here by the back-door.
2. What this binary compound is doing here remains completely mysterious. The circumstance that it "can be decomposed into two chemical constituents that fully saturate each other" (fully saturate each other after they have been decomposed?!) could at most teach us something new if it were actually to decompose. But we are not told a word about that, hence for the time being we have to assume that it does not decompose, e.g. in the case of paraffin.
3. When the zinc in the liquid has been negatively charged, and the copper positively charged, we bring them into contact (outside the liquid). At once "these electricities neutralise one another through the place of contact, through which therefore a current of positive electricity flows from the copper to the zinc." Again, we do not learn why only a current of "positive" electricity flows in the one direction, and not also a current of "negative", electricity in the opposite direction. We do not learn at all what becomes of the negative electricity, which, hitherto, was just as necessary as the positive; the effect of the electric force of separation consisted precisely in setting them free to oppose one another. Now it has been suddenly suppressed, as it were eliminated, and it is made to appear as if there exists only positive electricity.
But then again, on p. 51, the precise opposite is said, for here "the electricities unite in one current"; consequently both negative and positive flow in it! Who will rescue us from this confusion?
4. "Moreover, since the electric force of separation making its appearance on the contact with these two metals carries away the positive electricity in the same direction, the effects of the electric forces of separation are not abolished as in a closed metallic circuit. Hence, there arises a constant current," etc. – This is a bit thick. For as we shall see a few pages later (p. 52), Wiedemann proves to us that on the "formation of a constant current ... the electric force of separation at the place of contact of the metals ... must be inactive, that not only does a current occur even when this force, instead of carrying away the positive electricity in the same direction, acts in opposition to the direction of the current, but that in this case too it is not compensated by a definite share of the force of separation of the battery and, hence, once again is inactive." Consequently, how can Wiedemann on p. 45 make an electric force of separation participate as a necessary factor in the formation of the current when on p. 52 he puts it out of action for the duration of the current, and that, moreover, by a hypothesis erected specially for this purpose?
5. " Hence there arises a constant current of positive electricity, flowing in the closed circuit from the copper through its place of contact with the zinc, in the direction of the latter, and through the liquid from the zinc to the copper." – But in the case of such a constant electric current, "heat would be produced by it in the conductors themselves," and also it would be possible for "an electro-magnetic motor to be driven by it and thus work performed," which, however, is impossible without supply of energy. Since Wiedemann up to now has not breathed a syllable as to whether such a supply of energy occurs, or whence it comes, the constant current so far remains just as much an impossibility as in both the previously investigated cases.
No one feels this more than Wiedemann himself. So he finds it desirable to hurry as quickly as possible over the many ticklish points of this remarkable explanation of current formation, and instead to entertain the reader throughout several pages with all kinds of elementary anecdotes about the thermal, chemical, magnetic, and physiological effects of this still mysterious current, in the course of which by way of exception he even adopts a quite popular tone. Then he suddenly continues (p. 49):
"We have now to investigate in what way the electric forces of separation are active in a closed circuit of two metals and a liquid, e.g. zinc, copper, and hydrochloric acid."
" We know that when the current traverses the liquid the constituents of the binary compound (HCl) contained in it become separated in such a manner that one constituent (H) is set free on the copper, and an equivalent amount of the other (Cl) on the zinc, whereby the latter constituent combines with an equivalent amount of zinc to form ZnCl."
We know! If we know this, we certainly do not know it from Wiedemann who, as we have seen, so far has not breathed a syllable about this process. Further, if we do know anything of this process, it is that it cannot proceed in the way described by Wiedemann.
On the formation of a molecule of HCl from hydrogen and chlorine, an amount of energy ==22,000 units of heat is liberated (Julius Thomsen). Therefore, to break away the chlorine from its combination with hydrogen, the same quantity of energy must be supplied from outside for each molecule of HCl. Where does the battery derive this energy? Wiedemann's description does not tell us, so let us look for ourselves.
When chlorine combines with zinc to form zinc chloride a considerably greater quantity of energy is liberated than is necessary to separate chlorine from hydrogen; (Zn,Cl2) develops 97,210 and 2(H,Cl) 44,000 units of heat (Julius Thomsen). With that the process in the battery becomes comprehensible. Hence it is not, as Wiedemann relates, that hydrogen without more ado is liberated from the copper, and chlorine from the zinc, "whereby" then subsequently and accidentally the zinc and chlorine enter into combination. On the contrary, the union of the zinc with the chlorine is the essential, basic condition for the whole process, and as long as this does not take place, one would wait in vain for hydrogen on the copper.
The excess of energy liberated on formation of a molecule of ZnCl2 over that expended on liberating two atoms of H from two molecules of HCl, is converted in the battery into electric motion and provides the entire "electromotive force" that makes its appearance in the current circuit. Hence it is not a mysterious "electric force of separation" that tears asunder hydrogen and chlorine without any demonstrable source of energy, it is the total chemical process taking place in the battery that endows all the "electric forces of separation" and "electromotive forces" of the circuit with the energy necessary for their existence.
For the time being, therefore, we put on record that Wiedemann's second explanation of the current gives us just as little assistance as his first one, and let us proceed further with the text:
"This process proves that the behaviour of the binary substance between the metals does not consist merely in a simple predominant attraction of its entire mass for one electricity or the other, as in the case of metals, but that in addition a special action of its constituents is exhibited. Since the constituent Cl is given off where the current of positive electricity enters the fluid, and the constituent H where the negative electricity enters, we assume that each equivalent of chlorine in the compound HCl is charged with a definite amount of negative electricity determining its attraction by the entering positive electricity. It is the electro-negative constituent of the compound. Similarly the equivalent H must be charged with positive electricity and so represent the electro-positive constituent of the compound. These charges could be produced on the combination of H and Cl in just the same way as on the contact of zinc and copper. Since the compound HCl as such is non-electric, we must assume accordingly that in it the atoms of the positive and negative constituents contain equal quantities of positive and negative electricity.
If now a zinc plate and a copper plate are dipped in dilute hydrochloric acid, we can suppose that the zinc has a stronger attraction towards the electro-negative constituent (Cl) than towards the electropositive one (H). Consequently, the molecules of hydrochloric acid in contact with the zinc would dispose themselves so that their electro- negative constituents are turned towards the zinc, and their electro-positive constituents towards the copper. Owing to the constituents when so arranged exerting their electrical attraction on the constituents of the next molecules of HCl, the whole series of molecules between the zinc and copper plates becomes arranged as in Fig. 10:
- Zinc | Copper + | ||||||||||||
- | + | - | + | - | + | - | + | - | + | ||||
Cl | H | Cl | H | Cl | H | Cl | H | Cl | H |
If the second metal acts on the positive hydrogen as the zinc does on the negative chlorine, it would help to promote the arrangement. If it acted in the opposite manner, only more weakly, at least the direction would remain unaltered.
By the influence exerted by the negative electricity of the electro-negative constituent Cl adjacent to the zinc, the electricity would be so distributed in the zinc that places on it which are close to the Cl of the immediately adjacent atom of acid would become charged positively, those farther away negatively.
Similarly, negative electricity would accumulate in the .copper next to the electro-positive constituent (H) of the adjacent atom of hydrochloric acid, and the positive electricity would be driven to the more remote parts.
Next, the positive electricity in the zinc would combine with the negative electricity of the immediately adjacent atom of Cl, and the latter itself with the zinc, to form non-electric ZnCl2. The electro-positive atom H, which was previously combined with this atom of Cl, would unite with the atom of Cl turned towards it belonging to the second atom of HCl, with simultaneous combination of the electricities contained in these atoms; similarly, the H of the second atom of HCl would combine with the Cl of the third atom, and so on, until finally an atom of H would be set free on the copper, the positive electricity of which would unite with the distributed negative electricity of the copper, so that it escapes in a non-electrified condition." This process would "repeat itself until the repulsive action of the electricities accumulated in the metal plates on the electricities of the hydrochloric acid constituents turned towards them balances the chemical attraction of the latter by the metals. If, however, the metal plates are joined by a conductor, the free electricities of the metal plates unite with one another and the above-mentioned processes can recommence. In this way a constant current of electricity comes into being. – It is evident that in the course of it a continual loss of vis viva occurs, owing to the constituents of the binary compound on their migration to the metals moving to the latter with a definite velocity and then coming to rest, either with formation of a compound (ZnCl2) or by escaping in the free state (H). (Note [by Wiedemann]: Since the gain in vis viva on separation of the constituents Cl and H ... is compensated by the vis viva lost on the union of these constituents with the constituents of the adjacent atoms, the influence of this process can be neglected.) This loss of vis viva is equivalent to the quantity of heat which is set free in the visibly occurring chemical process, essentially, therefore, that produced on the solution of an equivalent of zinc in the dilute acid. This value must be the same as that of the work expended on separating the electricities. If, therefore, the electricities unite to form a current, then, during the solution of an equivalent of zinc and the giving off of an equivalent of hydrogen from the liquid, there must make its appearance in the whole circuit, whether in the form of heat or in the form of external performance of work, an amount of work that is likewise equivalent to the development of heat corresponding to this chemical process."
"Let us assume – could – we must assume – we can suppose – would be distributed – would become charged," etc., etc. Sheer conjecture and subjunctives from which only three actual indicatives can be definitely extracted: firstly, that the combination of the zinc with the chlorine is now pronounced to be the condition for the liberation of hydrogen; secondly, as we now learn right at the end and as it were incidentally, that the energy herewith liberated is the source, and indeed the exclusive source, of all energy required for formation of the current; and thirdly, that this explanation of the current formation is as directly in contradiction to both those previously given as the latter are themselves mutually contradictory.
Further it is said:
"For the formation of a constant current, therefore, there is active wholly and solely the electric force of separation which is derived from the unequal attraction and polarisation of the atoms of the binary compound in the exciting liquid of the battery by the metal electrodes; at the place of contact of the metals, at which no further mechanical changes can occur, the electric force of separation must on the other hand be inactive. That this force, if by chance it counteracts the electromotive excitation of the metals by the liquid (as on immersion of zinc and lead in potassium cyanide solution), is not compensated by a definite share of the force of separation at the place of contact, is proved by the above-mentioned complete proportionality of the total electric force of separation (and electromotive force) in the circuit, with the abovementioned heat equivalent of the chemical process. Hence it must be neutralised in another way. This would most simply occur on the assumption that on contact of the exciting liquid with the metals the electromotive force is produced in a double manner; on the one hand by an unequally strong attraction of the mass of the liquid as a whole towards one or the other electricity, on the other hand by the unequal attraction of the metals towards the constituents of the liquid charged with opposite electricities. ... Owing to the former unequal (mass) attraction towards the electricities, the liquids would fully conform to the law of the voltaic series of metals, and in a closed circuit ... complete neutralisation to zero of the electric forces of separation (and electromotive forces) take place; the second (chemical) action ... on the other hand would be provided solely by the electric force of separation necessary for formation of the current and the corresponding electromotive force." (I, pp. 52-3.)
Herewith the last relics of the contact theory are now happily eliminated from formation of the current, and simultaneously also the last relics of Wiedemann's first explanation of current formation given on p. 45. It is finally conceded without reservation that the galvanic battery is a simple apparatus for converting liberated chemical energy into electric motion, into so-called electric force of separation and electromotive force, in exactly the same way as the steam engine is an apparatus for converting heat energy into mechanical motion. In the one case, as in the other, the apparatus provides only the conditions for liberation and further transformation of the energy, but supplies no energy on its own account. This once established, it remains for us now to make a closer examination of this third version of Wiedemann's explanation of the current.
How are the energy transformations in the circuit of the battery represented here?
It is evident, he says, that in the battery
"a continual loss of vis viva occurs, owing to the constituents of the binary compound on their migration to the metals moving to the latter with a definite velocity and then coming to rest, either with formation of a compound (ZnCl2) or by escaping in the free state (H).
This loss is equivalent to the quantity of heat which is set free in the visibly occurring chemical process, essentially, therefore, that produced on the solution of an equivalent of zinc in the dilute acid."
Firstly, if the process goes on in pure form, no heat at all is set free in the battery on solution of the zinc; the liberated energy is indeed converted directly into electricity and only from this converted once again into heat by the resistance of the whole circuit.
Secondly, vis viva is half the product of the mass and the square of the velocity. Hence the above statement would read: the energy set free on solution of an equivalent of zinc in dilute hydrochloric acid, ==so many calories, is likewise equivalent to half the product of the mass of the ions and the square of the velocity with which they migrate to the metals. Expressed in this way, the sentence is obviously false: the vis viva appearing on the migration of the ions is far removed from being equivalent to the energy set free by the chemical process.[14] But if it were to be so, no current would be possible, since there would be no energy remaining over for the current in the remainder of the circuit. Hence the further remark is introduced that the ions come to rest "either with formation of a compound (ZnCl2) or by escaping in the free state." But if the loss of vis viva is to include also the energy changes taking place on these two processes, then we have indeed arrived at a deadlock. For it is precisely to these two processes taken together that we owe the whole liberated energy, so that there can be absolutely no question here of a loss of vis viva, but at most of a gain.
It is therefore obvious that Wiedemann himself did not mean anything definite by this sentence, rather the "loss of vis viva" represents only the deus ex machina which is to enable him to make the fatal leap from the old contact theory to the chemical explanation of the current. In point of fact, the loss of vis viva has now performed its function and is dismissed; henceforth the chemical process in the battery has undisputed sway as the sole source of energy for current formation, and the only remaining anxiety of our author is as to how he can politely get rid from the current of the last relic of excitation of electricity by the contact of chemically indifferent bodies, namely, the force of separation active at the place of contact of the two metals.
Reading the above explanation of current formation given by Wiedemann, one could believe oneself in the presence of a specimen of the kind of apologia that wholly – and half-credulous theologians of almost forty years ago employed to meet the philologico-historical bible criticism of Strauss, Wilke, Bruno Bauer, etc. The method is exactly the same, and it is bound to be so. For in both cases it is a question of saving the heritage of tradition from scientific thought. Exclusive empiricism, which at most allows thinking in the form of mathematical calculation, imagines that it operates only with undeniable facts. In reality, however, it operates predominantly with out-of-date notions, with the largely obsolete products of thought of its predecessors, and such are positive and negative electricity; the electric force of separation, the contact theory. These serve it as the foundation of endless mathematical calculations in which, owing to the strictness of the mathematical formulation, the hypothetical nature of the premises gets comfortably forgotten. This kind of empiricism is as credulous towards the results of the thought of its predecessors as it is sceptical in its attitude to the results of contemporary thought. For it the experimentally established facts have gradually become inseparable from the traditional interpretation associated with them; the simplest electric phenomenon is presented falsely, e.g. by smuggling in the two electricities; this empiricism cannot any longer describe the facts correctly, because the traditional interpretation is woven into the description. In short, we have here in the field of the theory of electricity a tradition just as highly developed as that in the field of theology. And since in both fields the results of recent research, the establishment of hitherto unknown or disputed facts and of the necessarily following theoretical conclusions, run pitilessly counter to the old traditions, the defenders of these traditions find themselves in the direst dilemma. They have to resort to all kinds of subterfuges and untenable expedients, to the glossing over of irreconcilable contradictions, and thus finally land themselves into a medley of contradictions from which they have no escape. It is this faith in all the old theory of electricity that entangles Wiedemann here in the most hopeless contradictions, simply owing to the hopeless attempt to reconcile rationally the old explanation of the current by "contact force," with the modern one by liberation of chemical energy.
It will perhaps be objected that the above criticism of Wiedemann's explanation of the current rests on juggling with words. It may be objected that, although at the beginning Wiedemann expresses himself somewhat carelessly and inaccurately, still he does finally give the correct account in accord with the principle of the conservation of energy and so sets everything right. As against this view, we give below another example, his description of the process in the battery: zinc-dilute sulphuric acid-copper:
"If, however, the two plates are joined by a wire, a galvanic current arises .... By the electrolytic process, one equivalent of hydrogen is given off at the copper plate from the water of the dilute sulphuric acid, this hydrogen escaping in bubbles. At the zinc there is formed one equivalent of oxygen which oxidises the zinc to form zinc oxide, the latter becoming dissolved in the surrounding acid to form sulphuric zinc oxide." (I, pp. 592-3.)
To break up water into hydrogen and oxygen requires an amount of energy of 69,924 heat- units for each molecule of water. From where then comes the energy in the above cell? "By the electrolytic process." And from where does the electrolytic process get it? No answer is given.
But Wiedemann further tells us, not once, but at least twice (I, p. 472 and p. 614), that "according to recent knowledge the water itself is not decomposed," but that in our case it is the sulphuric acid H2SO4 that splits up into H2 on the one hand and into SO3+O on the other hand, whereby under suitable conditions H2 and O can escape in gaseous form. But this alters the whole nature of the process. The H2 of the H2SO4 is directly replaced by the bivalent zinc, forming zinc sulphate, ZnSO4. There remains over, on the one side H2, on the other SO3+O. The two gases escape in the proportions in which they unite to form water, the SO3 unites with the water of the solvent to reform H2SO4, i.e. sulphuric acid. The formation of ZnSO4, however, develops sufficient energy not only to replace and liberate the hydrogen of the sulphuric acid, but also to leave over a considerable excess, which in our case is expended in forming the current. Hence the zinc does not wait until the electrolytic process puts free oxygen at its disposal, in order first to become oxidised and then to become dissolved in the acid. On the contrary, it enters directly into the process, which only comes into being at all by this participation of the zinc.
We see here how obsolete chemical notions come to the aid of the obsolete contact notions. According to modern views, a salt is an acid in which hydrogen has been replaced by a metal. The process under investigation confirms this view; the direct replacement of the hydrogen of the acid by the zinc fully explains the energy change. The old view, adhered to by Wiedemann, regards a salt as a compound of a metallic oxide with an acid and therefore speaks of sulphuric zinc oxide instead of zinc sulphate. But to arrive at sulphuric zinc oxide in our battery of zinc and sulphuric acid, the zinc must first be oxidised. In order to oxidise the zinc fast enough, we must have free oxygen. In order to get free oxygen, we must assume – since hydrogen appears at the copper plate – that the water is decomposed. In order to decompose water, we need tremendous energy. How are we to get this? Simply "by the electrolytic process" which itself cannot come into operation as long as its chemical end product, the "sulphuric zinc oxide," has not begun to be formed. The child gives birth to the mother.
Consequently, here again Wiedemann puts the whole course of the process absolutely the wrong way round and upside down. And the reason is that he lumps together active and passive electrolysis, two directly opposite processes, simply as electrolysis.
So far we have only examined the events in the battery, i.e. that process in which an excess of energy is set free by chemical action and is converted into electricity by the arrangements of the battery. But it is well known that this process can also be reversed: the electricity of a constant current produced in the battery from chemical energy can, in its turn, be reconverted into chemical energy in a decomposition cell inserted in the circuit. The two processes are obviously the opposites of each other; if the first is regarded as chemico-electric, then the second is electro-chemical. Both can take place in the same circuit with the same substances. Thus, the voltaic pile from gas elements, the current of which is produced by the union of hydrogen and oxygen to form water, can, in a decomposition cell inserted in the circuit, furnish hydrogen and oxygen in the proportion in which they form water. The usual mode of view lumps these two opposite processes together under the single expression: electrolysis, and does not even distinguish between active and passive electrolysis, between an exciting liquid and a passive electrolyte. Thus Wiedemann treats of electrolysis in general for 143 pages and then adds at the end some remarks on "electrolysis in the battery," in which, moreover, the processes in actual batteries only occupy the lesser part of the seventeen pages of this section. Also in the "theory of electrolysis" that follows, this contrast of battery and decomposition cell is not even mentioned, and anyone who looked for some treatment of the energy changes in the circuit in the next chapter, "the influence of electrolysis on the conduction resistance and the electromotive force in the circuit" would be bitterly disappointed.
Let us now consider the irresistible "electrolytic process" which is able to separate H2 from O without visible supply of energy, and which plays the same role in the present section of the book as did previously the mysterious "electric force of separation."
"Besides the primary, purely electrolytic process of separation of the ions, a quantity of secondary, purely chemical processes, quite independent of the first, take place by the action of the ions split off by the current. This action can take place on the material of the electrodes and on the bodies that are decomposed, and in the case of solutions also on the solvent." (I, p. 481.) Let us return to the above-mentioned battery: zinc and copper in dilute sulphuric acid. Here, according to Wiedemann's own statement, the separated ions are the H2 and O of the water. Consequently for him the oxidation of the zinc and the formation of ZnSO4 is a secondary, purely chemical process, independent of the electrolytic process, in spite of the fact that it is only through it that the primary process becomes possible.
Let us now examine somewhat in detail the confusion that must necessarily arise from this inversion of the true course of events:
Let us consider in the first place the so-called secondary processes in the decomposition cell, of which Wiedemann puts forward some examples [15] (pp. 481, 482).
I. "The electrolysis of Na2SO4 dissolved in water. This "breaks up ... into 1 equivalent of SO3+O ... and 1 equivalent of Na .... The latter, however, reacts on the water solvent and splits off from it 1 equivalent of H, while 1 equivalent of sodium is formed and becomes dissolved in the surrounding water."
The equation is
Na2SO4+2H2O==O+SO3+2NaOH+2H.
In fact, in this example the decomposition
Na2SO4==Na2+SO3+O
could be regarded as the primary electro-chemical process, and the further transformation
Na2+2H2O==2NaHO+2H
as the secondary, purely chemical one. But this secondary process is effected immediately at the electrode where the hydrogen appears, the very considerable quantity of energy (111,810 heat-units for Na, O, H, aq. according to Julius Thomsen) thereby liberated is therefore, at least for the most part, converted into electricity, and only a portion in the cell is transformed directly into heat. But the latter can also happen to the chemical energy directly or primarily liberated in the battery. The quantity of energy which has thus become available and converted into electricity, however, is to be subtracted from that which the current has to supply for continued decomposition of the Na2SO4 If the conversion of sodium into hydrated oxide appeared in the first moment of the total process as a secondary process, from the second moment on wards it becomes an essential factor of the total process and so ceases to be secondary.
But yet a third process takes place in this decomposition cell: SO3 combines with H2O to form H2SO4, sulphuric acid, provided the SO3 does not enter into combination with the metal of the positive electrode, in which case again energy would be liberated. But this change does not necessarily proceed immediately at the electrode, and consequently the quantity of energy (21,320 heat-units, J. Thomsen) thereby liberated becomes converted wholly or mainly into heat in the cell itself, and provides at most a very small portion of the electricity in the current. The only really secondary process occurring in this cell is therefore not mentioned at all by Wiedemann.
II. "If a solution of copper sulphate is electrolysed between a positive copper electrode and a negative one of platinum, 1 equivalent of copper separates out for 1 equivalent of water decomposed at the negative platinum electrode, with simultaneous decomposition of sulphuric acid in the same current circuit; at the positive electrode, 1 equivalent of SO4 should make its appearance; but this combines with the copper of the electrode to form one equivalent of CuSO4, which becomes dissolved in the water of the electrolysed solution."
In the modern chemical mode of expression we have, therefore, to represent the process as follows: copper is deposited on the platinum; the liberated SO4, which cannot exist by itself, splits up into SO3+O, the latter escaping in the free state; the SO3 takes up H2O from the aqueous solvent and forms H2SO4, which again combines with the copper of the electrode to form CuSO4, H2 being set free. Accurately speaking, we have here three processes: (1) the separation of Cu and SO4; (2) SO3+O+H2O==H2SO 4+O; (3) H2SO4+Cu==H2+Cu SO4. It is natural to regard the first as primary, the two others as secondary. But if we inquire into the energy changes, we find that the first process is completely compensated by a part of the third: the separation of copper from SO4 by the reuniting of both at the other electrode. If we leave out of account the energy required for shifting the copper from one electrode to the other, and likewise the inevitable, not accurately determinable, loss of energy in the cell by conversion into heat, we have here a case where the so-called primary process withdraws no energy from the current. The current provides energy exclusively to make possible the separation of H2 and O, which moreover is indirect, and this proves to be the real chemical result of the whole process – hence, for carrying out a secondary, or even tertiary, process.
Nevertheless, in both the above examples, as in other cases also, it is undeniable that the distinction of primary and secondary processes has a relative justification. Thus in both cases, among other things, water also is apparently decomposed and the elements of water given off at the opposite electrodes. Since, according to the most recent experiments, absolutely pure water comes as near as possible to being an ideal non-conductor, hence also a non-electrolyte, it is important to show that in these and similar cases it is not the water that is directly electro-chemically decomposed, but that the elements of water are separated from the acid, in the formation of which here it is true the water solvent must participate.
III. "If one electrolyses hydrochloric acid simultaneously in two U-tubes ... using in one tube a zinc positive electrode and in the other tube one of copper, then in the first tube a quantity of zinc 32.53 is dissolved, in the other a quantity of copper 2 x 32.7."
For the time being let us leave the copper out of account and consider the zinc. The decomposition of HCl is regarded here as the primary process, the solution of Zn as secondary.
According to this conception, therefore, the current brings to the decomposition cell from outside the energy necessary for the separation of H and Cl, and after this separation is completed the Cl combines with the Zn, whereby a quantity of energy is set free that is subtracted from that required for separating H and Cl; the current needs only therefore to supply the difference. So far everything agrees beautifully; but if we consider the two amounts of energy more closely we find that the one liberated on the formation of ZnCl2 is larger than that used up in separating 2HCl; consequently, that the current not only does not need to supply energy, but on the contrary receives energy. We are no longer confronted by a passive electrolyte, but by an exciting fluid, not a decomposition cell but a battery, which strengthens the current-forming voltaic pile by a new element; the process which we are supposed to conceive as secondary becomes absolutely primary, becoming the source of energy of the whole process and making the latter independent of the current supplied by the voltaic pile.
We see clearly here the source of the whole confusion prevailing in Wiedemann's theoretical description. Wiedemann's point of departure is electrolysis; whether this is active or passive, battery or decomposition cell, is all one to him: saw-bones is saw-bones, as the sergeant-major said to the doctor of philosophy doing his year's military service. And since it is easier to study electrolysis in the decomposition cell than in the battery, he does, in fact, take the decomposition cell as his point of departure, and he makes the processes taking place in it, and the partly justifiable division of them into primary and secondary, the measure of the altogether reverse processes in the battery, not even noticing when his decomposition cell becomes surreptitiously transformed into a battery. Hence he is able to put forward the statement: "the chemical affinity that the separated substances have for the electrodes has no influence on the electrolytic process as such" (I, p. 471), a sentence which in this absolute form, as we have seen, is totally false. Hence, further, his threefold theory of current formation: firstly, the old traditional one, by means of pure contact; secondly, that derived by means of the abstractly conceived electric force of separation, which in an inexplicable manner obtains for itself or for the "electrolytic process" the requisite energy for splitting apart the H and Cl in the battery and for forming a current as well; and finally, the modern, chemico-electric theory which demonstrates the source of this energy in the algebraic sum of the chemical reactions in the battery. Just as he does not notice that the second explanation overthrows the first, so also he has no idea that the third in its turn overthrows the second. On the contrary, the principle of the conservation of energy is merely added in a quite superficial way to the old theory handed down from routine, just as a new geometrical theorem is appended to an earlier one. He has no inkling that this principle makes necessary a revision of the whole traditional point of view in this as in all other fields of natural science. Hence Wiedemann confines himself to noting the principle in his explanation of the current, and then calmly puts it on one side, taking it up again only right at the end of the book, in the chapter on the work performed by the current. Even in the theory of the excitation of electricity by contact (I, p. 781 et seq.) the conservation of energy plays no role at all in relation to the chief subject dealt with, and is only incidentally brought in for throwing light on subsidiary matters: it is and remains a " secondary process."
Let us return to the above example III. There the same current was used to electrolyse hydrochloric acid in two U-tubes, but in one there was a positive electrode of zinc, in the other, the positive electrode used was of copper. According to Faraday's basic law of electrolysis, the same galvanic current decomposes in each cell equivalent quantities of electrolyte, and the quantities of the substances liberated at the two electrodes are also in proportion to their equivalents (I, p. 470). In the above case it was found that in the first tube a quantity of zinc 32.53 was dissolved, and in the other a quantity of copper 2 x 31.7. "Nevertheless," continues Wiedemann, "this is no proof for the equivalence of these values. They are observed only in the case of very weak currents with the formation of zinc chloride ... on the one hand, and of copper chloride ... on the other. In the case of denser currents, with the same amount of zinc dissolved, the quantity of dissolved copper would sink with formation of increasing quantities of chloride ... up to 31.7."
It is well known that zinc forms only a single compound with chlorine, zinc chloride, ZnCl; copper on the other hand forms two compounds, cupric chloride, CuCl2, and cuprous chloride, Cu2Cl2. Hence the process is that the weak current splits off two copper atoms from the electrode for each two chlorine atoms, the two copper atoms remaining united by one of their two valencies, while their two free valencies unite with the two chlorine atoms:
Cu | - | - | Cl |
|
|||
Cu | - | - | Cl |
On the other hand, if the current becomes stronger, it splits the copper atoms apart altogether, and each one unites with two chlorine atoms.
Cl | |
/ | |
Cu | |
\ | |
Cl |
In the case of currents of medium strength, both compounds are formed side by side. Thus it is solely the strength of the current that determines the formation of one or the other compound, and therefore the process is essentially electro-chemical, if this word has any meaning at all. Nevertheless Wiedemann declares explicitly that it is secondary, hence not electro-chemical, but purely chemical.
The above experiment is one performed by Renault (1867) and is one of a whole series of similar experiments in which the same current is led in one U-tube through salt solution (positive electrode – zinc), and in another cell through a varying electrolyte with various metals as the positive electrode. The amounts of the other metals dissolved here for each equivalent of zinc diverged very considerably, and Wiedemann gives the results of the whole series of experiments which, however, in point of fact, are mostly self-evident chemically and could not be otherwise. Thus, for one equivalent of zinc, only two-thirds of an equivalent of gold is dissolved in hydrochloric acid. This can only appear remarkable if, like Wiedemann, one adheres to the old equivalent weights and writes ZnCl for zinc chloride, according to which both the chlorine and the zinc appear in the chloride with only a single valency. In reality two chlorine atoms are included to one zinc atom, ZnCl2, and as soon as we know this formula we see at once that in the above determination of equivalents, the chlorine atom is to be taken as the unit and not the zinc atom. The formula for gold chloride, however, is AuCl3, from which it is at once seen that 3ZnCl2 contains exactly as much chlorine as 2AuCl3, and so all primary, secondary, and tertiary processes in the battery or cell are compelled to transform, for each part by weight[16] of zinc converted into zinc chloride, neither more nor less than two-thirds of a part by weight of gold into gold chloride. This holds absolutely unless the compound AuCl3[17] also could be prepared by galvanic means, in which case two equivalents of gold even would have to be dissolved for one equivalent of zinc, when also similar variations according to the current strength could occur as in the case of copper and chlorine mentioned above. The value of Renault's researches consists in the fact that they show how Faraday's law is confirmed by facts that appear to contradict it. But what they are supposed to contribute in throwing light on secondary processes in electrolysis is not evident.
Wiedemann's third example led us again from the decomposition cell to the battery, and in fact the battery offers by far the greatest interest when one investigates the electrolytic processes in relation to the transformations of energy taking place. Thus we not infrequently encounter batteries in which the chemico-electric processes seem to take place in direct contradiction to the law of the conservation of energy and in opposition to chemical affinity.
According to Poggendorff's measurements, the battery: zinc – concentrated salt solution – platinum, provides a current of strength 134.6. Hence we have here quite a respectable quantity of electricity, one third more than in the Daniell cell. What is the source of the energy appearing here as electricity? The "primary" process is the replacement of sodium in the chlorine compound by zinc. But in ordinary chemistry it is not zinc that replaces sodium, but vice versa, sodium replacing zinc from chlorine and other compounds. The "primary" process, far from being able to give the current the above quantity of energy, on the contrary requires itself a supply of energy from outside in order to come into being. Hence, with the mere "primary" process we are again at a standstill. Let us look, therefore, at the real process. We find that the change is not
Zn+2NaCl==ZnCl2+2Na,
but
Zn+2NaCl+2H2O==ZnCl2+2NaOH+H2.
In other words, the sodium is not split off in the free state at the negative electrode, but forms a hydroxide as in the above example I (pp. 118-119). To calculate the energy changes taking place here, Julius Thomsen's determinations provide us at least with certain important data. According to them, the energy liberated on combination is as follows:
(ZnCl2)==97,210, (ZnCl2, aqua)==15,630,
making a total for dissolved
zinc chloride | == | 112,840 | heat- | units. |
2 (Na, O, H, aqua) | == | 223,620 | " | " |
336,460 | " | " |
Deducting consumption of energy on the separations:
2(Na, Cl, aq.) | == | 193,020 | heat- | units. |
2(H2O) | == | 136,720 | " | " |
329,740 | " | " |
The excess of liberated energy equals 6,720 heat-units.
This amount is obviously small for the current strength obtained, but it suffices to explain, on the one hand, the separation of the sodium from chlorine, and on the other hand, the current formation in general.
We have here a striking example of the fact that the distinction of primary and secondary processes is purely relative and leads us ad absurdum as soon as we take it absolutely. The primary electrolytic process, taken alone, not only cannot produce any current, but cannot even take place itself. It is only the secondary, ostensibly purely chemical process that makes the primary one possible and, moreover, supplies the whole surplus energy for current formation. In reality, therefore, it proves to be the primary process and the other the secondary one. When the rigid differences and opposites, as imagined by the metaphysicians and metaphysical natural scientists, were dialectically reversed into their opposites by Hegel, it was said that he had twisted the words in their mouths. But if nature itself proceeds exactly like old Hegel, it is surely time to examine the matter more closely.
With greater justification one can regard as secondary those processes which, while taking place in consequence of the chemico-electric process of the battery or the electro- chemical process of the decomposition cell, do so independently and separately, occurring therefore at the same distance from the electrodes. The energy changes taking place in such secondary processes likewise do not enter into the electric process; directly they neither withdraw energy from it nor supply energy to it. Such processes occur very frequently in the decomposition cell; we saw an instance in the example I above on the formation of sulphuric acid during electrolysis of sodium sulphate. They are, however, of lesser interest here. Their occurrence in the battery, on the other hand, is of greater practical importance. For although they do not directly supply energy to, or withdraw it from, the chemico-electric process, nevertheless they alter the total available energy present in the battery and thus affect it indirectly.
There belong here, besides subsequent chemical changes of the ordinary kind, the phenomena that occur when the ions are liberated at the electrodes in a different condition from that in which they usually occur in the free state, and when they pass over to the latter only after moving away from the electrodes. In such cases the ions can assume a different density or a different state of aggregation. They can also undergo considerable changes in regard to their molecular constitution, and this case is the most interesting. In all these cases, an analogous heat change corresponds to the secondary chemical or physical change of the ions taking place at a certain distance from the electrodes; usually heat is set free, in some cases it is consumed. This heat change is, of course, restricted in the first place to the place where it occurs: the liquid in the battery or decomposition cell becomes warmer or cooler while the rest of the circuit remains unaffected. Hence this heat is called local heat. The liberated chemical energy available for conversion into electricity is, therefore, diminished or increased by the equivalent of this positive or negative local heat produced in the battery. According to Favre, in a battery with hydrogen peroxide and hydrochloric acid two-thirds of the total energy set free is consumed as local heat; the Grove cell, on the other hand, on closing the circuit became considerably cooler and therefore supplied energy from outside to the circuit by absorption of heat. Hence we see that these secondary processes also react on the primary one. We can make whatever approach we like; the distinction between primary and secondary processes remains merely a relative one and is regularly suspended in the interaction of the one with the other. If this is forgotten and such relative opposites treated as absolute, one finally gets hopelessly involved in contradictions, as we have seen above.
As is well known, on the electrolytic separation of gases the metal electrodes become covered with a thin layer of gas; in consequence the current strength decreases until the electrodes are saturated with gas, whereupon the weakened current again becomes constant. Favre and Silbermann have shown that local heat arises also in such a decomposition cell; this local heat, therefore, can only be due to the fact that the gases are not liberated at the electrodes in the state in which they usually occur, but that they are only brought into their usual state, after their separation from the electrode, by a further process bound up with the development of heat. But what is the state in which the gases are given off at the electrodes? It is impossible to express oneself more cautiously on this than Wiedemann does. He terms it "a certain," an "allotropic," an "active," and finally, in the case of oxygen, several times an "ozonised" state. In the case of hydrogen his statements are still more mysterious. Incidentally, the view comes out that ozone and, hydrogen peroxide are the forms in which this "active" state is realised. Our author is so keen in his pursuit of ozone that he even explains the extreme electro-negative properties of certain peroxides from the fact that they possibly "contain a part of the oxygen in the ozonised state!" (I, p. 57.) Certainly both ozone and hydrogen peroxide are formed on the so-called decomposition of water, but only in small quantities. There is no basis at all for assuming that in the case mentioned local heat is produced first of all by the origin and then by the decomposition of any large quantities of the above two compounds. We do not know the heat of formation of ozone, O3, from free oxygen atoms. According to Berthelot the heat of formation of hydrogen peroxide from H2O (liquid)+O=-21,480; the origin of this compound in any large amount would therefore give rise to a large excess of energy (about 30 per cent. of the energy required for the separation of H2 and O), which could not but be evident and demonstrable. Finally, ozone and hydrogen peroxide would only take oxygen into account (apart from current reversals, where both gases would come together at the same electrode), but not hydrogen. Yet the latter also escapes in an "active" state, so much so that in the combination: potassium nitrate solution between platinum electrodes, it combines directly with the nitrogen split off from the acid to form ammonia.
In point of fact, all these difficulties and doubts have no existence. The electrolytic process has no monopoly of splitting off bodies "in an active state." Every chemical decomposition does the same thing. It splits off the liberated chemical elements in the first place in the form of free atoms of O, H, N, etc., which only after their liberation can unite to form molecules, O2, H2, N2, etc., and on thus uniting give off a definite, though up-to-now still undetermined,[18] quantity of energy which appears as heat. But during the infinitesimal moment of time when the atoms are free, they are the bearers of the total quantity of energy that they can take up at all; while possessed of their maximum energy they are free to enter into any combination offered them. Hence they are "in an active state" in contrast to the molecules O2, H2, N2, which have already surrendered a part of this energy and cannot enter into combination with other elements without this quantity of energy surrendered being re-supplied from outside. We have no need, therefore, to resort to ozone and hydrogen peroxide, which themselves are only products of this active state. For instance, we can undertake the above-mentioned formation of ammonia on electrolysis of potassium nitrate even without a battery, simply by chemical means, by adding to nitric acid or a nitrate solution a liquid in which hydrogen is set free by a chemical process. In both cases the active state of the hydrogen is the same. But the interesting point about the electrolytic process is that here the transitory existence of the free atoms becomes as it were tangible. The process here is divided into two phases: the electrolysis provides free atoms at the electrodes, but their combination to form molecules occurs at some distance from the electrodes. However infinitesimally minute this distance may be compared to measurements where masses are concerned, it suffices to prevent the energy liberated on formation of the molecules being used for the electric process, at least for the most part, and so determines its conversion into heat – the local heat in the battery. But it is owing to this that the fact is established that the elements are split off as free atoms and for a moment have existed in the battery as free atoms. This fact, which in pure chemistry can only be established by theoretical conclusions,[19] is here proved experimentally, in so far as this is possible without sensuous perception of the atoms and molecules themselves. Herein lies the high scientific importance of the so-called local heat of the battery.
The conversion of chemical energy into electricity by means of the battery is a process about whose course we know next to nothing, and which we shall get to know in more detail only when the modus operandi of electric motion itself becomes better known.
The battery has ascribed to it an "electric force of separation" which is given for each particular battery. As we saw at the outset, Wiedemann conceded that this electric force of separation is not a definite form of energy. On the contrary, it is primarily nothing more than the capacity, the property, of a battery to convert a definite quantity of liberated chemical energy into electricity in unit time. Throughout the whole course of events, this chemical energy itself never assumes the form of an "electric force of separation," but, on the contrary, at once and immediately takes on the form of so-called "electromotive force" i.e. of electric motion. If in ordinary life we speak of the force of a steam engine in the sense that it is capable in unit time of converting a definite quantity of heat into the motion of masses, this is not a reason for introducing the same confusion of ideas into scientific thought also. We might just as well speak of the varying force of a pistol, a carbine, a smooth-bored gun, and a blunderbuss, because, with equal gunpowder charges and projectiles of equal weight, they shoot varying distances. But here the wrongness of the expression is quite obvious. Everyone knows that it is the ignition of the gunpowder charge that drives the bullet, and that the varying range of the weapon is only determined by the greater or lesser dissipation of energy according to the length of the barrel, the form of the projectile, and the tightness of its fitting. But it is the same for steam power and for the electric force of separation. Two steam engines – other conditions being equal, i.e. assuming the quantity of energy liberated in equal periods of time to be equal in both – or two galvanic batteries, of which the same thing holds good, differ as regards performance of work only owing to their greater or lesser dissipation of energy. And if until now all armies have been able to develop the technique of firearms without the assumption of a special shooting force of weapons, the science of electricity has absolutely no excuse for assuming an "electric force of separation" analogous to this shooting force, a force which embodies absolutely no energy and which therefore of itself cannot perform a millionth of a milligram-metre of work.
The same thing holds good for the second form of this "force of separation," the "electric force of contact of metals" mentioned by Helmholtz. It is nothing but the property of metals to convert on their contact the existing energy of another form into electricity. Hence it is likewise a force that does not contain a particle of energy. If we assume with Wiedemann that the source of energy of contact electricity lies in the vis viva of the motion of adhesion, then this energy exists in the first place in the form of this mass motion and on its vanishing becomes converted immediately into electric motion, without even for a moment assuming the form of an "electric force of contact."
And now we are assured in addition that the electromotive force, i.e. the chemical energy, reappearing as electric motion is proportional to this "electric force of separation," which not only contains no energy, but owing to the very conception of it cannot contain any! This proportionality between non-energy and energy obviously belongs to the same mathematics as that in which there figures the "ratio of the unit of electricity to the milligram." But the absurd form, which owes its existence only to the conception of a simple property as a mystical force, conceals a quite simple tautology: the capacity of a given battery to convert liberated chemical energy into electricity is measured – by what? By the quantity of the energy reappearing in the circuit as electricity in relation to the chemical energy consumed in the battery. That is all.
In order to arrive at an electric force of separation, one must take seriously the device of the two electric fluids. To convert this from its neutrality to its polarity, hence to split it apart, requires a certain expenditure of energy – the electric force of separation. Once separated, the two electricities can, on being reunited, again give off the same quantity of energy – electromotive force. But since nowadays no one, not even Wiedemann, regards the two electricities as having a real existence, it means that one is writing for a defunct public if one deals at length with such a point of view.
The basic error of the contact theory consists in the fact that it cannot divorce itself from the idea that contact force or electric force of separation is a source of energy, which of course was difficult when the mere capacity of an apparatus to bring about transformation of energy had been converted into a force; for indeed, a force ought precisely to be a definite form of energy. Because Wiedemann cannot rid himself of this unclear notion of force, although alongside of it the modern ideas of indestructible and uncreatable energy have been forced upon him, he falls into his nonsensical explanation of the current, No. 1, and into all the later demonstrated contradictions.
If the expression "electric force of separation" is directly contrary to reason, the other "electromotive force" is at least superfluous. We had heat engines long before we had electro-motors, and yet the theory of heat has been developed quite well without any special thermo-motor force. Just as the simple expression heat includes all phenomena of motion that belong to this form of energy, so also can the expression electricity in its own sphere. Moreover, very many forms of action of electricity are not at all directly "motor": the magnetisation of iron, chemical decomposition, conversion into heat. And finally, in every natural science, even in mechanics, it is always an advance if the word force can somehow be got rid of.[20]
We saw that Wiedemann did not accept the chemical explanation of the processes in the battery without a certain reluctance. This reluctance continually attacks him; where he can blame anything on the so-called chemical theory, this is certain to occur. Thus, "it is by no means established that the electromotive force is proportional to the intensity of chemical action." (I, p. 791.) Certainly not in every case; but where this proportionality does not occur, it is only a proof that the battery has been badly constructed, that dissipation of energy takes place in it. For that reason Wiedemann is quite right in paying no attention in his theoretical deductions to such subsidiary circumstances which falsify the purity of the process, but in simply assuring us that the electromotive force of a cell is equal to the mechanical equivalent of the chemical action taking place in it in unit time with unit intensity of current.
In another passage we read:
"That further, in the acid-alkali battery, the combination of acid and alkali is not the cause of current formation follows from the experiments paragraph 61 (Becquerel and Fechner), paragraph 260 (Dubois-Raymond), and paragraph 261 (Worm-Müller), according to which in certain cases when these are present in equivalent quantities no current makes its appearance, and likewise from the experiments (Henrici) mentioned in paragraph 62, that on interposing a solution of potassium nitrate between the potassium hydroxide and nitric acid, the electromotive force makes its appearance in the same way as without this interposition." (I, p. 791.)
The question whether the combination of acid and alkali is the cause of current formation is a matter of very serious concern for our author. Put in this form it is very easy to answer. The combination of acid and alkali is first of all the cause of a salt being formed with liberation of energy. Whether this energy wholly or partly takes the form of electricity depends on the circumstances under which it is liberated. For instance, in the battery: nitric acid and potassium hydroxide between platinum electrodes, this will be at least partially the case, and it is a matter of indifference for the formation of the current whether a potassium nitrate solution is interposed between the acid and alkali or not, since this can at most delay the salt formation but not prevent it. If, however, a battery is formed like one of Worm-Müller's, to which Wiedemann constantly refers, where the acid and alkali solution is in the middle, but a solution of their salt at both ends, and in the same concentration as the solution that is formed in the battery, then it is obvious that no current can arise, because on account of the end members – since everywhere identical bodies are formed - no ions can be produced. Hence the conversion of the liberated energy into electricity has been prevented in as direct a manner as if the circuit had not been closed; it is therefore not to be wondered at that no current is obtained. But that acid and alkali can in general produce a current is proved by the battery: carbon, sulphuric acid (one part in ten of water), potassium hydroxide (one part in ten of water), carbon, which according to Raoult has a current strength of 73.[21] And that, with suitable arrangement of the battery, acid and alkali can provide a current strength corresponding to the large quantity of energy set free on their combination, is seen from the fact that the most powerful batteries known depend almost exclusively on the formation of alkali salts, e.g. that of Wheatstone: platinum, platinic chloride, potassium amalgam – current strength 230; lead peroxide, dilute sulphuric acid, potassium amalgam==326; manganese peroxide instead of lead peroxide==280; in each case, if zinc amalgam was employed instead of potassium amalgam, the current strength fell almost exactly by 100. Similarly in the battery: manganese dioxide, potassium permanganate solution, potassium hydroxide, potassium, Beetz obtained the current strength 302, and further: platinum, dilute sulphuric acid, potassium==293.8 ; Joule: platinum, nitric acid, potassium hydroxide, potassium amalgam==302. The "cause" of these exceptionally strong current strengths is certainly the combination of acid and alkali, or alkali metal, and the large quantity of energy thereby liberated.
A few pages further on it is again stated:
"It must, however, be carefully borne in mind that the equivalent in work of the whole chemical action taking place at the place of contact of the heterogeneous bodies is not to be directly regarded as the measure of the electromotive force in the circuit. When, for instance, in the acid-alkali battery (iterum Crispinus!) of Becquerel, these two substances combine, when carbon is consumed in the battery: platinum, molten potassium nitrate, carbon, when the zinc is rapidly dissolved in an ordinary cell of copper, impure zinc, dilute sulphuric acid, with formation of local currents, then a large part of the work produced (it should read: energy liberated) in these chemical processes . . . is converted into heat and is thus lost for the total current circuit." (I, p. 798.)
All these processes are to be referred to loss of energy in the battery; they do not affect the fact that the electric motion arises from transformed chemical energy, but only affect the quantity of energy transformed.
Electricians have devoted an endless amount of time and trouble to composing the most diverse batteries and measuring their "electromotive force." The experimental material thus accumulated contains very much of value, but certainly still more that is valueless. For instance, what is the scientific value of experiments in which "water" is employed as the electrolyte, when, as has now been proved by F. Kohlrausch, water is the worst conductor and therefore also the worst electrolyte,[22] and where, therefore, it is not the water but its unknown impurities that caused the process? And yet, for instance, almost half of all Fechner's experiments depend on such employment of water, even his "experimentum crucis," by which he sought to establish the contact theory impregnably on the ruins of the chemical theory. As is already evident from this, in almost all such experiments, a few only excepted, the chemical processes in the battery, which however form the source of the so-called electromotive force, remain practically disregarded. There are, however, a number of batteries whose chemical composition does not allow of any certain conclusion being drawn as to the chemical changes proceeding in them when the current circuit is closed. On the contrary, as Wiedemann (I, p. 797) says, it is "not to be denied that we are by no means in all cases able to obtain an insight into the chemical attractions in the battery." Hence, from the ever more important chemical aspect, all such experiments are valueless in so far as they are not repeated with these processes under control.
In these experiments it is indeed only quite by way of exception that any account is taken of the energy changes taking place in the battery. Many of them were made before the law of the equivalence of motion was recognised in natural science, but as a matter of custom they continue to be dragged from one textbook into another without being controlled or their value summed up. It has been said that electricity has no inertia (which has about as much sense as saying velocity has no specific gravity), but this certainly cannot be said of the theory of electricity.
So far, we have regarded the galvanic cell as all arrangement in which, in consequence of the contact relations established, chemical energy is liberated in some way for the time being unknown, and converted into electricity. We have likewise described the decomposition cell as an apparatus in which the reverse process is set up, electric motion being converted into chemical energy and used up as such. In so doing we had to put in the foreground the chemical side of the process that has been so much neglected by electricians, because this was the only way of getting rid of the lumber of notions handed down from the old contact theory and the theory of the two electric fluids. This once accomplished, the question was whether the chemical process in the battery takes place under the same conditions as outside it, or whether special phenomena make their appearance that are dependent on the electric excitation.
In every science, incorrect notions are, in the last resort, apart from errors of observation, incorrect notions of correct facts. The latter remain even when the former are shown to be false. Although we have discarded the old contact theory, the established facts remain, of which they were supposed to be the explanation. Let us consider these and with them the electric aspect proper of the process in the battery.
It is not disputed that on the contact of heterogeneous bodies, with or without chemical changes, an excitation of electricity occurs which can be demonstrated by means of an electroscope or a galvanometer. As we have already seen at the outset, it is difficult to establish in a particular battery the source of energy of these in themselves extremely minute phenomena of motion; it suffices that the existence of such an external source is generally conceded.
In 1850-53, Kohlrausch published a series of experiments in which he assembled the separate components of a battery in pairs and tested the static electric stresses produced in each case; the electromotive force of the cell should then be composed of the algebraic sum of these stresses. Thus, taking the stress of Zn/Cu==100, he calculates the relative strengths of the Daniell and Grove cells as follows:
For the Daniell cell:
Zn/Cu+amalg.Zn/H2SO4+Cu/SO4==100+149-21==228.
For the Grove cell:
Zn/Pt+amalg.Zn/H2SO4+Pt/HNO3==107+149+149==405,
which closely agrees with the direct measurement of the current strengths of these cells. These results, however, are by no means certain. In the first place, Wiedemann himself calls attention to the fact that Kohlrausch only gives the final result but "unfortunately no figures for the results of the separate experiments." In the second place, Woodman himself repeatedly recognises that all attempts to determine quantitatively the electric excitation on contact of metals, and still more on contact of metal and fluid, are at least very uncertain on account of the numerous unavoidable sources of error. If, nevertheless, lie repeatedly uses Kohlrausch's figures in his calculations, we shall do better not to follow him here, the more so as another means of determination is available which is not open to these objections.
If the two exciting plates of a battery are immersed in the liquid and then joined into a circuit by the terminals of a galvanometer, according to Wiedemann, "the initial deflection of its magnetic needle, before chemical changes have altered the strength of the electric excitation, is a measure of the sum of electromotive forces in the circuit." Batteries of various strengths, therefore, give initial deflections of various strengths, and the magnitude of these initial deflections is proportional to the current strength of the corresponding batteries.
It looks as if we had here tangibly before our eyes the "electric force of separation," the "contact force," which causes motion independently of any chemical action. And this in fact is the opinion of the whole contact theory. In reality we are confronted here by a relation between electric excitation and chemical action that we have not yet investigated. In order to pass to this subject, we shall first of all examine rather more closely the so- called electromotive law; in so doing, we shall find that here also the traditional contact notions not only provide no explanation, but once again directly bar the way to an explanation.
If in any cell consisting of two metals and a liquid, e.g. zinc, dilute hydrochloric acid, and copper, one inserts a third metal such as a platinum plate, without connecting it to the external circuit by a wire, then the initial deflection of the galvanometer will be exactly the same as without the platinum plate. Consequently it has no effect on the excitation of electricity. But it is not permissible to express this so simply in electromotive language. Hence one reads:
"The sum of the electromotive forces of zinc and platinum and platinum and copper now takes the place of the electromotive force of zinc and copper in the liquid. Since the path of the electricities is not perceptibly altered by the insertion of the platinum plate, we can conclude from the identity of the galvanometer readings in the two cases, that the electromotive force of zinc and copper in the liquid is equal to that of zinc and platinum plus that of platinum and copper in the same liquid. This would correspond to Volta's theory of the excitation of electricity between the metals as such. The result, which holds good for all liquids and metals, is expressed by saying: On their electromotive excitation by liquids, metals follow the law of the voltaic series. This law is also given the name of the electromotive law." (Wiedemann, I, p. 62.)
In saying that in this combination the platinum does not act at all as an exciter of electricity, one expresses what is simply a fact. If one says that it does act as an exciter of electricity, but in two opposite directions with equal strength so that the effect is neutralised, the fact is converted into a hypothesis merely for the sake of doing honour to the "electromotive force." In both cases the platinum plays the role of a fictitious person.
During the first deflection there is still no closed circuit. The acids, being undecomposed,[23] do not conduct; they can only conduct by means of the ions. If the third metal has no influence on the first deflection, this is simply the result of the fact that it is still isolated.
How does the third metal behave after the establishment of the constant current and during the latter?
In the voltaic series of metals in most liquids, zinc lies after the alkali metals fairly close to the positive end and platinum at the negative end, copper being between the two. Hence, if platinum is put as above between copper and zinc it is negative to them both. If the platinum had any effect at all, the current in the liquid would have to flow to the platinum both from the zinc and from the copper, that is away from both electrodes to the unconnected platinum; which would be a contradictio in adjectio. The basic condition for the action of several different metals in the battery consists precisely in their being connected among themselves externally to the circuit. An unconnected, superfluous metal in the battery acts as a non-conductor; it can neither form ions nor allow them to pass through, and without ions we know of no conduction in electrolytes. Hence it is not merely a fictitious person, it even stands in the way by forcing the ions to go round it.
The same thing holds good if we connect the zinc and platinum, leaving the copper unconnected in the middle; here the latter, if it had any effect at all, would produce a current from the zinc to the copper and another from the copper to the platinum; hence it would have to act as a sort of intermediary electrode and give off hydrogen on the side turned towards the zinc, which again is impossible.
If we discard the traditional electromotive mode of expression the case becomes extremely simple. As we have seen, the galvanic battery is an apparatus in which chemical energy is liberated and transformed into electricity. It consists as a rule of one or more liquids and two metals as electrodes, which must be connected together by a conductor outside the liquids. This completes the apparatus. Anything else that is dipped unconnected into the exciting liquid, whether metal, glass, resin, or whatever you like, cannot participate in the chemico-electric process taking place in the battery, in the formation of the current, so long as the liquid is not chemically altered; it can at most hinder the process. Whatever the capacity for exciting electricity of a third metal dipped into the liquid may be, or that of one or both electrodes of the battery, it cannot have any effect so long as this metal is not connected to the circuit outside the liquid.
Consequently, not only is Wiedemann's derivation, as given above, of the so- called electromotive law false, but the interpretation which he gives to this law is also false. One can speak neither of a compensating electromotive activity of the unconnected metal, since the sole condition for such activity is cut off from the outset; nor can the so- called electromotive law be deduced from a fact which lies outside the sphere of this law.
In 1845, old Poggendorff published a series of experiments in which he measured the electromotive force of various batteries, that is to say the quantity of electricity supplied by each of them in unit time.[24] Of these experiments, the first twenty-seven are of special value, in each of which three given metals were one after another connected in the same exciting liquid to three different batteries, and the latter investigated and compared as regards the quantity of electricity produced. As a good adherent of the contact theory, Poggendorff also put the third metal unconnected in the battery in each experiment and so had the satisfaction of convincing himself that in all eighty-one batteries this third metal remained a pure inactive element in the combination. But the significance of these experiments by no means consists in this fact but rather in the confirmation and establishment of the correct meaning of the so-called electromotive law.
Let us consider the above series of batteries in which zinc, copper, and platinum are connected together in pairs in dilute hydrochloric acid. Here Poggendorff found the quantities of electricity produced to be as follows, taking that of a Daniell cell as 100:
Zinc-copper | .. | .. | 78.8 | |
Copper-platinum | .. | 74.3 | ||
Total | .. | .. | 153.1 | |
Zinc-platinum | .. | .. | 153.7 |
Thus, zinc in direct connection with platinum produced almost exactly the same quantity of electricity as zinc-copper copper-platinum. The same thing occurred in all other batteries, whatever liquids and metals were employed. When, from a series of metals in the same exciting liquid, batteries were formed in such a way that in each case, according to the voltaic series valid for this liquid, the second, third, fourth, etc., one after the other were made to serve as negative electrodes for the preceding one and as positive electrodes for that which followed, then the sum of the quantities of electricity produced by all these batteries is equal to the quantity of electricity produced by a battery formed directly between the two end members of the whole metallic series. For instance, in dilute hydrochloric acid the sum total of the quantities of electricity produced by the batteries zinc-zinc, zinc-iron, iron- copper, copper-silver, and silver-platinum, would be equal to that produced by the battery: zinc-platinum. A pile formed from all the cells of the above series would, other things being equal, be exactly neutralised by the introduction of a zinc-platinum cell with a current of the opposite direction.
In this form, the so-called electromotive law has a real and considerable significance. It reveals a new aspect of the inter-connection between chemical and electrical action. Hitherto, on investigating mainly the source of energy of the galvanic current, this source, the chemical change, appeared as the active side of the process; the electricity was produced from it and therefore appeared primarily as passive. Now this is reversed. The electric excitation determined by the constitution of the heterogeneous bodies put into contact in the battery can neither add nor subtract energy from the chemical action (other than by conversion of liberated energy into electricity). It can, however, according as the battery is made up, accelerate or slow down this action.
If the battery, zinc-dilute hydrochloric acid-copper, produced in unit time only half as much electricity for the current as the battery, zinc-dilute hydrochloric acid-platinum, this means in chemical terms that the first battery produces in unit time only half as much zinc chloride and hydrogen as the second. Hence the chemical action has been doubled, although the purely chemical conditions for this action have remained the same. The electric excitation has become the regulator of the chemical action; it appears now as the active side, the chemical action being the passive side.
Thus, it becomes comprehensible that a number of processes previously regarded as purely chemical now appear as electro-chemical. Chemically pure zinc is not attacked at all by dilute acid, or only very weakly; ordinary commercial zinc, on the other hand, is rapidly dissolved with formation of a salt and production of hydrogen; it contains an admixture of other metals and carbon, which make their appearance in unequal amounts at various places of the surface. Local currents are formed in the acid between them and the zinc itself, the zinc areas forming the positive electrodes and the other metals the negative electrodes, the hydrogen bubbles being given off on the latter. Likewise the phenomenon that when iron is dipped into a solution of copper sulphate it becomes covered with a layer of copper is now seen to be an electro-chemical phenomenon, one determined by the currents which arise between the heterogeneous areas of the surface of the iron.
In accordance with this we find also that the voltaic series of metals in liquids corresponds on the whole to the series in which metals replace one another from their compounds with halogens and acid radicles. At the extreme negative end of the voltaic series we regularly find the metals of the gold group, gold, platinum, palladium, rhodium, which oxidise with difficulty, are little or not at all attacked by acids, and which are easily precipitated from their salts by other metals. At the extreme positive end are the alkali metals which exhibit exactly the opposite behaviour: they are scarcely to be split off from their oxides except with the greatest expenditure of energy; they occur in nature almost exclusively in the form of salts, and of all the metals they have by far the greatest affinity for halogens and acid radicles. Between these two come the other metals in somewhat varying sequence, but such that on the whole electrical and chemical behaviour correspond to one another. The sequence of the separate members varies according to the liquids and has hardly been finally established for any single liquid. It is even permissible to doubt whether there exists such an absolute voltaic series of metals for any single liquid. Given suitable batteries and decomposition cells, two pieces of the same metal can act as positive and negative electrodes respectively, hence the same metal can be both positive and negative towards itself. In thermocells which convert heat into electricity, with large temperature differences at the two junctions, the direction of the current is reversed; the previously positive metal becomes negative and vice versa. Similarly, there is no absolute series according to which the metals replace one another from their chemical compounds with a particular halogen or acid radicle; in many cases by supplying energy in the form of heat we are able almost at will to alter and reverse the series valid for ordinary temperatures.
Hence we find here a peculiar interaction between chemical action and electricity. The chemical action in the battery, which provides the electricity with the total energy for current formation, is in many cases first brought into operation, and in all cases quantitatively regulated, by the electric charges developed in the battery. If previously the processes in the battery seemed to be chemico-electric in nature, we see here that they are just as much electro-chemical. From the point of view of formation of the constant current, chemical action appears to be the primary thing: from the point of view of excitation of current it appears as secondary and accessory. The reciprocal action excludes any absolute primary or absolute secondary; but it is just as much a double-sided process which from its very nature can be regarded from two different standpoints; to be understood in its totality it must even be investigated from both standpoints one after the other, before the total result can be arrived at. If, however, we adhere onesidedly to a single standpoint as the absolute one in contrast to the other, or if we arbitrarily jump from one to the other according to the momentary needs of our argument, we shall remain entangled in the onesidedness of metaphysical thinking; the interconnection escapes us and we become involved in one contradiction after another.
We saw above that, according to Wiedemann, the initial deflection of the galvanometer, immediately after dipping the exciting plates into the liquid of the battery and before chemical changes have altered the strength of the electric excitation, is "a measure of the sum of electromotive forces in the circuit."
So far we have become acquainted with the so-called electromotive force as a form of energy, which in our case was produced in an equivalent amount from chemical energy, and which in the further course of the process became reconverted into equivalent quantities of heat, mass motion, etc. Here we learn all at once that the "sum of the electromotive forces in the circuit" is already in existence before this energy has been liberated by chemical changes; in other words, that the electromotive force is nothing but the capacity of a particular cell to liberate a particular quantity of chemical energy in unit time and to convert it into electric motion. As previously in the case of the electric force of separation, so here also the electromotive force appears as a force which does not contain a single spark of energy. Consequently, Wiedemann understands by "electromotive force" two totally different things: on the one hand, the capacity of a battery to liberate a definite quantity of given chemical energy and to convert it into electric motion, on the other hand, the quantity of electric motion itself that is developed. The fact that the two are proportional, that the one is a measure for the other, does not do away with the distinction between them. The chemical action in the battery, the quantity of electricity developed, and the heat in the circuit derived from it, when no other work is performed, are even more than proportional, they are equivalent; but that does not infringe the diversity between them. The capacity of a steam engine with a given cylinder bore and piston stroke to produce a given quantity of mechanical motion from the heat supplied is very different from this mechanical motion itself, however proportional to it it may be. And while such a mode of speech was tolerable at a time when natural science had not yet said anything of the conservation of energy, nevertheless it is obvious that since the recognition of this basic law it is no longer permissible to confuse real active energy in any form with the capacity of an apparatus to impart this form to energy which is being liberated. This confusion is a corollary of the confusion of force and energy in the case of the electric force of separation; these two confusions provide a harmonious background for Wiedemann's three mutually contradictory explanations of the current, and in the last resort are the basis in general for all his errors and confusions in regard to so-called "electromotive force."
Besides the above-considered peculiar interaction between chemical action and electricity there is also a second point that they have in common which likewise indicates a closer kinship between these two forms of motion. Both can exist only for an infinitesimal period. The chemical process takes place suddenly for each group of atoms undergoing it. It can be prolonged only by the presence of new material that continually renews it. The same thing holds for electric motion. Hardly has it been produced from some other form of motion before it is once more converted into a third form; only the continual readiness of available energy can produce the constant current, in which at each moment new quantities of motion assume the form of energy and lose it again.
An insight into this close connection of chemical and electric action and vice versa will lead to important results in both spheres of investigation.[25] Such an insight is already becoming more and more widespread. Among chemists, Lothar Meyer, and after him Kekulé, have plainly stated that a revival of the electro-chemical theory in a rejuvenated form is impending. Among electricians also, as indicated especially by the latest works of F. Kohlrausch, the conviction seems finally to have taken hold that only exact attention to the chemical processes in the battery and decomposition cell can help their science to emerge from the blind alley of old traditions.
And in fact one cannot see how else a firm foundation is to be given to the theory of galvanism and so secondarily to that of magnetism and static electricity, other than by a chemically exact general revision of all traditional uncontrolled experiments made from an obsolete scientific standpoint, with exact attention to establishing the energy changes and preliminary rejection of all traditional theoretical notions about electricity.
Notes
[1] For the factual material in this chapter we rely mainly on Wiedemann's Lehre vom Galvanismus and Elektromagnetismus [Theory of Galvanism and Electro-Magnetism], 2 vols. in 3 parts, 2nd edition, Braunschweig, 1874.
In Nature, June 15, 1882, there is a reference to this "admirable treatise, which in its forthcoming shape, with electrostatics added, will be the greatest experimental treatise on electricity in existence." [Note by F. Engels.]
[2] The central discovery was J. J. Thomson's discovery of the electron.
[3], [4] See Appendix II, p. 334.?????
[5] We now know that a current in metals is due to a movement of electrons, whereas in electrolytes, e.g. salt water and gases, molecules with both positive and negative charges carry it.
[6] This is incorrect, but was generally stated in textbooks at the time when Engels wrote.
[7] The view that electrical energy was located in the ether was the basis of the experiments which gave us radio. It seemed in turn to have been negated by the discovery of electrons. However, the electron in turn is now regarded by many physicists as a system of waves rather than a well-defined particle.
[8] Every broadcast is a confirmation of this theory to-day.
[9] Now called dynamos.
[10] I use the term " electricity " in the sense of electric motion with the same justification that the general term " heat " is used to express the form of motion that our senses perceive as heat. This is the less open to objection in as much as any possible confusion with the state of stress of electricity is here expressly excluded in advance. [Note by F. Engels.]
[11] Once more it must be remembered that this term was very loosely used sixty years ago, and now has a definite meaning, not of course equivalent to any form of energy.
[12] I.e. kinetic energy.
[13] As we should now say, an electrolyte.
[14] F. Kohlrausch has recently calculated (Wiedemann's Annalen, VI, p. 206) that "immense forces" are required to drive the ions through the water solvent. To cause one milligram to move through a distance of one millimetre requires an attractive force which for H ==32,500 kg., for Cl=5,200 kg., hence for HCl=37,700 kg. – Even if these figures are absolutely correct, they do not affect what has been said above. But the calculation contains the hypothetical factors hitherto inevitable in the sphere of electricity and therefore requires control by experiment.[*] Such control appears possible. In the first place, these "immense forces" must reappear as a definite quantity of energy in the place where they are consumed, i.e. in the above case in the battery. Secondly, the energy consumed by them must be smaller than that supplied by the chemical processes of the battery, and there should be a definite difference. Thirdly, this difference must be used up in the rest of the circuit and likewise be quantitatively demonstrable there. Only after confirmation by this control can the above figures be regarded as final. The demonstration in the decomposition cell appears still more susceptible of realisation. (Note by F. Engels.)
[*] Actually the hypothesis was incorrect. It is now believed that when HCl is dissolved in water, it is almost completely broken up into positive H ions and negative Cl ions, which do not require "immense forces" to drive them. Engels was fully justified in his scepticism.
[15] It may be noted here once for all that Wiedemann employs throughout the old chemical equivalent values, writing HO, ZnCl, etc. In my equations, the modern atomic weights are everywhere employed, putting, therefore, H2O, ZnCl2, etc. [Note by F. Engels.]
[16] As it stands this is untrue. Probably "part by weight" is a slip of Engels' pen for "equivalent by weight" or some such phrase.
[17] Again this does not make sense as it stands. Presumably Engels meant to refer to a hypothetical AuCl.
[18] This quantity has now not only been determined but utilised. Thus if the hydrogen is previously split into atoms, the ordinary oxy-hydrogen flame can be made a great deal hotter.
[19] It has since been proved experimentally.
[20] This statement has been very fully confirmed by the progress of physics in the last fifty years. It is interesting to note that idealistic writers have used this disappearance of the notion of force as an argument that materialism is being refuted!
[21] In all the following data relating to current strength, the Daniell cell is put==100. [Note by F. Engels.]
[22] A column of the purest water prepared by Kohlrausch 1mm. in length offered the same resistance as a copper conductor of the same diameter and a length approximately that of the moon's orbit. Naumann, Allgemeine Chemie [General Chemistry], p. 729.[**] [Note by F. Engels.]
[**] Appendix II, p. 335.
[23] This statement is in accord with theory fifty years ago, but incorrect.
[24] This is, of course, not electromotive force in the modern sense of the term.
[25] This has, of course, been very completely verified by the researches of the last fifty years. Electrical theory was revolutionised by Thomson's study of electrical conduction in gases, which led to his discovery of electrons. And the whole of chemistry, including the chemistry of such unions as that between carbon and hydrogen, which at first sight is quite unconnected with electrical phenomena, has been restated in terms of electrons.